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Abstract—Drug resistance occurs when living organisms such as 

bacteria, viruses, fungi and parasites change in ways that render the 
medications used incapable of curing the disease or medical 
conditions they cause. The microorganisms which have become 
resistant to most antimicrobials are commonly referred to as 
“superbugs”. This development is a major concern to patients and 
physicians because a resistant infection may be vital, being able to 
spread to others, and impose huge costs to individuals and society. 
Here, we consider a model of the dynamic interaction between 
sensitive and resistant strains of pathogens in a nutrient limiting 
environment of the gastrointestinal tract. A delay   in the process of 
conversion from a sensitive strain to a resistant strain is incorporated 
by addition of a delay in the rate equation of the resistant strain with 
an exponential factor to account for the probability that a resistant 
bacteria survives from the time t   to the time t. The system is 
analyzed for the stability of its various equilibrium solutions. The 
model is then expanded to take into account the effect of periodic 
drug treatment leading us to a system of delayed impulsive 
differential equations. Conditions are discovered under which the 
system is persistent, and stability of the susceptible strain free 
equilibrium and the bacterial free equilibrium can be expected. 
 

Keywords—Drug resistance, Conversion delay, Impulsive drug 
treatment, Stability, Persistence. 

I. INTRODUCTION 
RUG resistance, or chemical resistance, is a consequence 
of evolution by means of natural selection, which results 

in the change in the inherited characteristics of living 
organisms over successive generations [1]. Resistance to 
drugs or chemicals or toxins is a response to pressures 
imposed on any biological population and individual 
organisms may vary in the extent to which they are sensitive 
to the drug used. Those with greater fitness may be more 
capable of surviving drug treatment. Drug-resistant traits are 
consequently inherited by the offspring of the resistant 
individuals, giving rise to a population that is more drug-
resistant. Drug resistance increases in severity if the drug in 
use is not capable of making sexual reproduction or cell-
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division or horizontal gene transfer impossible in the entire 
target population. This can be seen in some cancer cells which 
may develop resistance to the drugs used in chemotherapy [1]. 

According to [2] about 70 percent of the microorganisms 
that cause infections are resistant to at least one of the drugs 
commonly used for treatment. Some microbes are resistant to 
all approved antibiotics and doctors are forced into treatment 
using experimental and potentially toxic drugs. In a recent 
study [2], 25% of bacterial pneumonia patients were 
discovered to be resistant to penicillin. Moreover, an 
additional 25% of patients have acquired resistance to more 
than one antibiotic. The microorganisms which have become 
resistant to most antimicrobials are commonly referred to as 
“superbugs”. A major part of the problem is the increasing 
use, and misuse, of existing antibiotics, while one of the 
factors that contributes to the increasing spread of such 
bacteria, making previously manageable problems of 
resistance more serious, is global travel. 

Increasing number of research reports and articles reflects 
the gravity of the situation which necessitates the continual 
search for new antibiotics in order to maintain a supply of 
effective drugs at all times. It is commonly acknowledged that 
the development of resistant strains is unavoidable, but the 
slack ways that antibiotics are administered and used has 
greatly exacerbated the situation [3]. Unless we can detect and 
contain antibiotic resistance as soon as it emerges, society 
could be faced with infections that we may have no hope of 
curing. 

Several models [4]-[7] have been proposed to assist the 
physicians in the attempt to contain the development of 
antibiotic resistance. In 2007, Puttasontiphot et al. [8] 
proposed and analyzed a mathematical model of antimicrobial 
resistance in the gastrointestinal tract which involves the 
resistant strain, sensitive strain, and the amount of available 
nutrients. The model did not take into account the delay in the 
process by which the sensitive bacteria are converted into the 
resistant population. However, there have been reported 
evidence [9], [10] that there is a time delay in the process of 
plasmid transfer which converts a susceptible into a resistant 
member of the microbial population. Although 
Sirinukunwattana et al. later incorporated the delays in their 
model of antibiotic resistance [11], it was assumed that the 
nutrients are abundantly available so that the process which 
they modelled was not nutrient-limited. 
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In this paper, we consider a nutrient limited situation of 
antibiotic resistance with conversion delay. A delay   in the 
process of conversion from a sensitive strain to a resistant 
strain is incorporated by addition of a delay in the rate 
equation of the resistant strain with an exponential factor to 
account for the probability that a resistant bacteria survives 
from the time t   to the time t. The model is analyzed for 
the stability of its 4 equilibrium solutions conditional on the 
delay. The model is then expanded to take into account the 
effect of periodic drug treatment leading us to a system of 
delayed impulsive differential equations. Conditions are 
discovered under which the system is persistent, and stability 
of the resistant strain free equilibrium and the sensitive strain 
free equilibrium can be expected. Persistence of the bacterial 
free equilibrium, and the susceptible bacteria free equilibrium, 
are of great relevance clinically since such information can 
benefit a physician in the attempt to treat or contain the 
developing symptoms at the risk of drug resistance 
development. 

II. REFERENCED MODEL 
As in [8], we shall let ( )x t be the density of bacteria sensitive 
to antibiotics, ( )y t  the density of bacteria resistant to 
antibiotics, and ( )z t  the concentration of nutrients available 
in the environment, such as the gastrointestinal tract, for 
bacterial growth. 

In the work by Andrup et al. [9] on the kinetics of 
conjugative transfer, a study was carried out of the plasmid 
pXO16 from Bacillus thuringiensis subsp. Israelensis. It was 
discovered that the conjugative transfer takes about 3 to 4 
min. The mating complex was found to consist of one donor 
and one recipient cell. Having donated the plasmid, Andrup et 
al. [9] reported that the donor needs a "period of recovery" of 
approximately 10 min before it can redonate the plasmid. 
Moreover, it was found that during short observation period 
when the recipient cells were in excess compared with the 
donors, the process of conjugation could be reasonably 
described by a kinetic model analogous to the Michaelis-
Menten model for enzyme catalysis [9]. 

Taking the above report into account, we may then 
construct the following model system, based on the core 
model in [8], which incorporates the time delay in the plasmid 
transfer. 
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with initial condition 
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where   3 3,0 , .C C      
The first term on the right of (1) is the growth rate of 

sensitive population, the second term is the rate of removal 
due to remaining level of drug in the system, and the third 
term is the rate of conversion of sensitive into the resistant 
member, assuming the Michaelis-Menten dynamics as 
suggested by Andrup et al. [9]. The delay observed in [9]-[10] 
is incorporated in this conversion term by the time delay   
with the factor 1e    to take into account the probability that a 
resistant bacteria survives from the time t   to the time t. In 
the second equation, the first term on the right corresponds to 
the growth rate of the resistant strain. In order to differentiated 
between the two strains, the growth rate of the sensitive 
population has been assumed to take a logistic growth form 
while that of the resistant population grows exponentially with 
the population size. The second term on the right of (2) is the 
rate of increase due to conversion of the sensitive strain 
through plasmid transfer. In the third equation, the first term is 
the rate of increase of available nutrients, the second is the 
rate of its consumption by the sensitive bacteria, and the third 
is that by to the resistant strain. The last terms in the three 
equations are the respective removal rates due to natural 
means. 

The following result can be shown concerning the system’s 
equilibrium solutions which satisfy 0x y z     . 
 
Lemma 1 If 
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then, our delayed differential equation model (1)-(3) possesses 
4 physically meaningful equilibriums: 
1. * (0,0, *)E z  
2. 0 0 0(0, , )E y z , where 

 0 3
0

4 2

( * ) Rz z
y

a

 



              (11) 
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3. 1 1 1( ,0, )E x z , where 
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4. 2 2 2 2( , , )E x y z satisfying 
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Proof 
This has been shown in our work in [12], but included here for 
completeness. 

It is straight forward to verify that , 1,2,.., 4,iE i   satisfy 
0x y z      with 0  . 

We next observe from (1) that if x   then 0x   and so 
x  . Also, from (3), with 0  , that if *z z , then 0z  . 
Therefore, we have *z z . Thus, 0 0y  . When 0 0y  , we 
have the equilibrium 0E . The equilibrium 1E  then 
corresponds to the case 0 0y  . Inequality (4) gives 0 0z  . 

For 1E , (13) and (14) yield 
 

 
 
1 1 1 3 3 2 1
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1 1( )z  is a quadratic function with 1 1( 0) 0z    and 

1 1( )z    as 1z  . Thus, (18) has a positive solution 

1 0z  . 
For 2E , Eq. (15) and (17) yield 
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From (17), we see that as 2 0x  , z z  , and by (16) 
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So, as 2 0x  , 
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by (6). As 2x   , 
z z , 

and by (17) 
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by (7). Hence, by the Intermediate Value Theorem, there is a 
2 2,0z z z  , such that 2 0  . This means, the 2E is a 

positive equilibrium, which completes the proof.      
 

In what follows, we shall use the notation 
( )u u t    

We next use the comparison theorem to show the solutions to 
the delay model system (1)-(3) are bounded under suitable 
conditions in [12], which is presented here for completeness. 
 
Theorem 1 There is an 0M   such that for any solution 
( ( ), ( ), ( ))x t y t z t  of (1)-(3) with positive initial values, 

( )x t M , ( )y t M , ( )z t M  for all large t, provided 
 2 1 1a a                   (21) 
 
Proof 
We let 
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and 
2 1 1 2 3min( , , ) 0h a a       . 

The derivative of w along positive solutions of (1)-(3) can be 
derived as follows. 
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due to (21). 
We consider the following comparison equation 

1 1
4

* ( )R z
w hw t
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    

which gives 

 1
4 4

* *  as .htR Rz z
w ke M t

a h a h

          (22) 

If ( ( ), ( ), ( ))x t y t z t  is a solution of (1)-(3) with the initial 
conditions 1( ) ( ) 0x     , 2( ) ( ) 0y     , and 

3( ) ( ) 0z     , there then exists an M, depending only on the 
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model parameters, such that 1( ) ( )w t w t , by the Comparison 
Theorem. Consequently, by the definition of w and (22), each 
solution with positive initial values is uniformly bounded.  

III. STABILITY SYSTEM EQUILIBRIUMS 
In this section, we investigate the stability property of each of 
the 4 equilibriums given above. 
 
Bacteria Free Equilibrium *E : 

By linearizing the system (1)-(3) about *E  and finding its 
Jacobian matrix *J  at *E , we can prove the following [12]. 
 
Theorem 2 If 

 2
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*
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z

K z


 


               (23) 
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2 1

*
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a z
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K z
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
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then *E  is locally asymptotically stable for .0   
 
Proof 
By linearizing the model system about *E , we can write the 
characteristic equation of the model system from its Jacobian 
matrix *J  at *E and find that the eigenvalues to be 

1 3   < 0, 

2 2
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
  


, 
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 1
3 2 1

*
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a z
a

K z

   


. 

2 is negative by (23), and 3  is negative by (24). Thus, all 
eigenvalues of *J  are negative which means the equilibrium 

*E  is locally asymptotically stable.           
 
Susceptible Bacteria Free Equilibrium 0E : 
Finding the Jacobian matrix 0J  of (1)-(3) at 0E , one can 
show the following theorem which has been shown in [12], 
given again here for completeness. 
 
Theorem 3 If 
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then 0E  is locally asymptotically stable for .0   
 
Proof 
The eigenvalues of 0J  are 
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which is negative due to (25), and 1,2  that satisfy 
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Therefore, 1,2  are both negative. Thus, all eigenvalues of 0J  

are negative and hence, the equilibrium 0E  is locally 
asymptotically stable.                 
 
Resistant Bacteria Free Equilibrium 1E : 
Similarly, we can prove the asymptotic stability of 1E  which 
has been shown in [12], given again here for completeness. 
 
Theorem 4 If 
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then 1E  is locally asymptotically stable for .0   
 
Proof 
Two of the eigenvalues of the Jacobian matrix 1J  at 1E  are 

1,2  satisfying 
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Therefore, 1,2  are both negative. The other eigenvalues of 

1J  can be solved from 
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which is negative if 0   due to (26). 
Now, suppose Re  can be positive for some 0  , then 

there must be a value of 0   at which Re 0  , so that 
iw  , where   is real. Substituting this into (27), one 

obtains 
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Equating real and imaginary parts of the above equation to 
zero, we have 
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Squaring (28)-(29) and adding, we obtain, 
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due to (26). 
Thus, (30) has no real solution and therefore, Re 0   for 

all 0  , which means the equilibrium 1E  is locally 
asymptotically stable.                 
 
Endemic Equilibrium 2E : 

Considering the Jacobian matrix 2J of (1)-(3) at 2E , we 
can sate the following results which have been shown in [12], 
given again here for completeness. 
 
Theorem 5 If 

 2 21 2 2

2 2S

x ya x z

K z K x







 
             (31) 

and 
 7 7 53 2 8 4 1 2 6( ) 0c c c c c c c c c c           (32) 
where 

 
2 21 2 2

1 2
2 2S

x ya x z
c

K z K x






 

 
, 2

2
2

x
c

K x








, 

 
1 2 2

3 2
2

( )S

S

a K x x
c

K z

 



,

 
2

4 2
2

K y
c

K x

 







, 

 
2

5 2
2

R R

R

K y
c

K z





, 3 2

6
2S

a z
c

K z



 

4 2
7

2R

a z
c

K z



, 

   
3 2 4 2

8 32 2
22

S R

RS

a K x a K y
c

K zK z
  


 

then 2E  is locally asymptotically stable for 0  . 
 
Proof 
For 0  , the characteristic equation of 2J  at 2E  can be 
written as 

 3 2
1 2 3 0C C C                 (33) 

where 
 1 1 8C c c  , 
 2 2 4 1 8 3 6 5 7C c c c c c c c c    , 
  3 7 7 53 2 8 4 1 2 6( )C c c c c c c c c c c     
In the case that 0  , it is clear that 1C  and 2C are positive, 
while 3C is positive since (28) holds. Therefore, by the Routh-
Hurwitz criteria, 2E  is locally asymptotically stable for 

0  .                       
 

Turning our attention to the case where 0  , we rely on 
the work of Culshaw and Ruan [13] and write 

( ) ( ) ( )i       where ( )  and ( )  are real. The 
characteristic equation is now written as 
 3 2

1 2 4 5 6( ) 0B B B B B e               (34) 

where 
1 1 2 1 8 3 6 5 7, ,B C B c c c c c c     

4 1 7 2 6 5( )B c c c c c   

5 2 4B c c , 

6B   3 7 2 8 4c c c c c  
Substituting ( ) ( ) ( )i       in (30), we obtain 

     3 2
1 2( ) ( ) ( ) ( ) +B ( ) ( )i B i i                

and 
 4 5 6(cos sin ) ( ) 0B e i B i B             (35) 

From Theorem 5, we know that 2E  is locally 
asymptotically stable for 0  , which means (0) 0  . By 
continuity of the function ( )  , we are assured that ( ) 0    
for values of   such that 0 c    for some 0.c   That is 

2E  remains locally asymptotically stable for these values of 
 . 

Now, suppose ( ) 0c    for some 0c  , and ( ) 0    
for values of 0 c   . Then, 2E  may lose its stability at 

c  , at which point ( ) ( )ci    . However, i  is a 
solution of (33) if and only if 

3 2
1 2 4i B iB B       

  5 6( )(cos sin ) 0B i B i             (36) 
Equating the real and imaginary parts in (36) to zero, we 
obtain 
 2

1 4 6 5cos sinB B B B             (37) 

 3
2 5 6cos sinB B B                (38) 

Squaring and adding (35) and (36), one obtains 

   2 22 3 2 2 2
1 4 2 6 5B B B B B              (39) 

Letting 2k  in (39) leads to the equation in k as follows. 
3 2

1 2 3( ) 0P k k d k d k d                (40) 
where 

2
1 1 22d B B  , 2 2

2 2 1 4 52d B B B B   , 
2 2

3 4 6d B B   
Thus, we state may prove the following results [12]. 
 
Lemma 2 Let 0  . Under the assumptions (31)-(32) in 
Theorem 5, suppose (40) has no positive solutions. Then, all 
solutions of (33) have negative real parts. 
 
Proof 
Since (40) has no positive solutions, any real   cannot be a 
solution of (33). This means there is no k  such that 

( ) ( )k ki    . Since Theorem 5 ensures that (0) 0  ,   
remains negative for all   by the continuity of ( )  .    
 

Lemma 3 Let 
2

1 1 2
1

3
3

d d d
K

  
 , and 3 0d  . 

i) If 2 0d   and 1( ) 0P K  , (40) has a positive solution. 
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ii) If 2
1 23 0d d  , (40) has no positive solutions. 

Proof 
i) Since it is given that 2 0d  , we have 

 2
1 2 13d d d   

Thus, 1K  is real and positive. From (40), we have 

3(0) 0P d  , with the given fact that 1( ) 0P K  , by the 
Intermediate Value Theorem, (40) has a positive solution, say 

*K . That is, ( *) 0P K  . 

ii) If 2
1 23 0d d  , then 

2
1

2 0
3

d
d   , which means 

2
1 2( ) 3 2 0P k k d k d      has no real solution. 

Noting that 2(0) 0P d   , we therefore know that the 
quadratic polynomial ( )P k  is strictly positive on the real line. 
Since 3(0) 0P d  , the function ( )P k  does not vanish 
anywhere on the positive real line, and hence (40) has no 
positive solution.                   
 

Consequently, we have the next result concerning the 
stability of the equilibrium solution 2E  [12]. 
 
Theorem 6 
If the equilibrium 2E  exists, (31)-(32) hold, and 

  2
1 23 0d d                 (41) 

then 2E  is locally asymptotically stable for 0  . 
 
Proof 
When 0  , Theorem 5 states that all eigenvalues of 2J  have 
negative real parts, provided (31) and (32) hold. By part ii) of 
Lemma 2, (40) has no positive solutions under the assumption 
(41). 

IV. SYSTEM UNDER IMPULSIVE DRUG TREATMENT 
From the delayed system (10)-(3), we have construct in [14] 
an impulsive system to describe the periodic drug intakes, and 
arrive at the following model system. 

 1
2 1

( ) ( )( ) ( ) ( )
( ) ( ) ( ), (42)

( ) ( )S

x t y ta x t z t x t
x t a x t x t t nT

K z t K x t








     

 
1

2

( ) ( )( ) ( )( ) ( ),     (43)
( ) ( )

R

R

e x t y ty t z t
y t y t t nT

K z t K x t

 




  




  
    

  

 * 3 4
3

( ) ( ) ( ) ( )( ) ( ) ,           (44)
( ) ( )S R

a x t z t a y t z t
z t z z t t nT

K z t K z t
     

 
 

( ) (1 ) ( ), , 1,2,...x t x t t nT n           (45) 
( ) ( ),  , 1, 2,...y t y t t nT n          (46) 
( ) ( ), , 1,2,...z t z t t nT n          (47) 

where    1 2 3 3( ), ( ), ( ) ( ), ( ), ( ) ,x t y t z t t t t C      such that 

(0) 0, 1, 2,3i i   , with   3 3,0 ,C C     , and 

( ), ( ),x t y t   and ( )z t  being the right limits of ( ), ( ),x t y t  

and ( )z t  at time t, respectively. T is the period and   

 0 1   represents the killing effort, or strength of 
prescribed drug. 

Next, we discuss the stability behavior of the bacteria free 
equilibrium as well as the susceptible bacteria free equilibrium 
of (42)-(47), which corresponds to the desirable situation 
where both susceptible and resistant bacterial populations 
become extinct. 

In order to investigate the stability of the system’s 
equilibriums, we need the following result on the positivity of 
the solutions, the proof of which is quite straight forward and 
therefore it is stated without proof [14]. 

 
Lemma 4 
Suppose ( ) ( ( ), ( ), ( ))t x t y t z tX  is a solution of (42)-(47) 
with (0 ) 0 X , then ( ) 0t X  for all 0t  . Moreover, 

( ) 0t X  for all 0t   if (0 ) 0 X . 
 

The stability of the bacterial free equilibrium *(0,0, )z  has 
already been established in [14] and we state the result here 
without proof. 
 
Theorem 7 The bacterial free solution *(0,0, )z  of (10)-(15) 
is globally stable for 0   provided 

2 1 1a a                  (48) 

and 

2 R                   (49) 
 

Next, to investigate the stability of the susceptible strain 
free equilibrium we let 

 1
0

2 1 0( )
a K

R
K a y



 


 


 

, 

1

01 0
2 1

0

0

0
2

0

3 0

0

4 0

0

,

,

,
( )

,

,

S

R

R R

R

S

R

ya z
a a

K z K

e y
b

K

k y
c

K z

a z
d

K z

a z
e

K z









 







   













 

and 

 
 

4 0
32

0

R

R

a K y
f

K z
 


 

then the following theorem show that the sensitive strain free 
equilibrium 0 0 0(0, , )E y z  is asymptotically stable under 
suitable conditions on the system parameters.  
 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 7, 2013 480



 

 

Theorem 8 Suppose 

  
2 4

,
2

f f ce


  
  

  
2 4

2
f f ce

c
 

  ,           (52) 

and 
  0 1R  .                  (53) 
The susceptible bacteria free equilibrium solution is locally 
asymptotically stable provided 

  
  1

1
ln 1 /T



  



             (54) 

 
Proof 
The Jacobian matrix of (42)-(44) at 0E  can be written as 

0

0 0
 0

a

J b c

d e f

 
   
    

 

The eigenvalues of 0J  are 

1 a   
which is negative due to (53), and 

2

2
4

2
f f ce

 
  

   

2

3
4

2
f f ce

 
  

    

which are both negative since , ,e f  and c are all positive, by 
their definitions above. The corresponding eigenvectors are 

1

2

1 0 0
, 1 ,  and 1

/ /c c


  

     
     
     
          

, 

where the exact expressions for 1  and 2 are not relevant to 
our analysis which follows. 

Using the above eigenvectors as its columns, we form the 
transformation matrix: 

 1

2

1 0 0
 1  1

/ /
P

c c


 

 
 

  
   

 

and let 

 0

0 0

0 0

0 0

at

t

t

e

L e

e





 
 

  
  
 

 

Then, the fundamental solution of the linearized system of 
(42)-(44) is 

0 1

2

0 0

( )

/ /

at

at t t

at t t

e

t PL e e e

e e c e c

 

 

 

  





 
 

   
   

 

when t nT , the linearization of (45)-(47) yields 

( ) 1 0 0 ( )
( ) 0 1 0 ( )

0 0 1 ( )( )

x t x t

y t y t

z tz t








                      

 

According to the Floquet’s theorem, the stability of 0E  is 
determined by the eigenvalues of 

1 0 0
0 1 0 ( )
0 0 1

L T




 
   
 
 

 

    1

2

(1 ) 0 0

/ /

aT

aT T T

aT T T

e

e e e

e e c e c

 

 





  





 
 
 
 
  

 

The eigenvalues , 1,2,3,i i   of L are such that 

1 (1 ) 1aTe    , 

since 0a   due to (53), 

2 (1 ) Te



  <1, 

Due to the inequality (54), and 

3 / 1Te c     

since (52) holds. Therefore, Floquet theory of impulsive 
differential equations assures that 0E  is locally asymptotically 
stable.                       
 

To investigate the system’s persistence, we need to first 
show the boundedness of the system’s solutions. 
 
Theorem 9 There is an M > 0 such that the solutions of (42)–
(47) satisfies ( )x t M , ( )y t M , ( )z t M  for all 0t   
provided 
  2 1 1 0a a                  (55) 
 
Proof 
We define 

1

4
( ) ( ) ( ) ,RW s W t e x y t z s t

a
 

 


     


 

Then, with (.)


being the derivative with respect to s, 

1

1
1 1

4

1
2 1

( )

( )
        =

R

S

D W e x y t z
a

e a z x x
a x e e x

K z

 


 
     

 







  


 

  


 




 

3 1 3 3
2

4 4

*R R

R

a z z z
y

a a

   



        (56) 

Using (55), Eq. (56) leads us to 

13

4 4

*
( ) R Rz

W s e x y z
a a

 
 

  
  

    
 




 

   ,  if W s nT     
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where  2 1 1 2 3min , ,a a       , which is positive due to 

(55), and 3

4

*R z

a

 
  . 

If s nT , we obtain 

1

4
( ) (1 ) ( ) ( )RW s e x y t z W s

a
 

 


     
 

 

Thus, 

 
0 0

( ) (0)exp ( ) exp ( )
t t t

u
W s W du dv du

  
  

       
    

 

0 0
        (0)exp ( ) exp ( )

s s
W du u s du      

 

0
        = (0) exp

s
s sW e e udu    

 

1        = (0)
s

s s e
W e e


 


   

  
 

 

        (0)

           as .

sW e

s

 





 

 


 

Therefore, 

 ( ) ( )W t W s 


M


  as t   

Thus, W is bounded, and hence so are the solutions 
( ), ( ),  and ( )x t y t z t  of (42)-(47).             

 
Next, persistence of the impulsive delay system (42)-(47) is 

shown in the following theorem. On the basis of the Theorem 
9, we can let * 0M   be the least upper bound of 

( ), ( ),  and ( )x t y t z t . 
 
Theorem 10 Under the conditions 0 (0)x   , (0) 0,y   

(0) 0z  , and (55) such that ( ) *x t M , ( ) *y t M , 
( ) *z t M  for all 0t  , the impulsive delay system model 

(42)-(47) is persistent. 
 
Proof 
From (44), we have 

 3 4
3 3

* *( ) *
S R

a M a M
z t z z

K K
 

 
     

 
 

We compare the above with the equation 

 3 4
3 3 3 3

* **
S R

a M a M
c z c

K K
 

      
 

 

which yields 

 3
3

3 4
3

*
lim

* *t

S R

z
c

a M a M

K K







 

  
 

 

Hence, by the Comparison Theorem, there exist 1 0t   and 

3 0   such that 

3
3 3 3 1

3 4
3

*
( ) ( ) 0 for all 

* *

S R

z
z t c t m t t

a M a M

K K





     

 
  

 
 From (42), we have 

 1 3
2 1

*( *)
( ) ( )

*S

Ma m M
x t x a x

K M K







    


 

We thus have 
 ( ) ( ) ( ),x t q t px t t nT     

 ( ) (1 ) ( ),x t x t t nT     
where 

 2
*

0
M

p a
K





     

and 

 ( )q t = 3( *)
( )

*S

m M
x t

K M

 


 

Integrating, we obtain 

0

0

( ) (1 ) (0)exp( ( ) )

                     [(1 )exp( ( ) ) ( )]

t

t t

s

x t x p ds

p d q s ds



 

  

  


 

 

        ( )

0
(1 ) (0) [(1 )e ( )]

t
pt p t se x q s ds        

  
0

(1 ) [ (0) e ( ) ]
t

pt pse x q s ds      

From our earlier observation, we have ( )x t  , easily 
proved by contradiction. Since M* is the least upper bound, 
we have *M  . Therefore ( ) 0q t  , and so there exists a 

2 1t t  and 1 0   such that 
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So, we have 
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Then, from (43) we then have 
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We thus have 
 ( ) ( ) ( ),y t q t py t t nT     

 ( ) ( ),y t y t t nT    
where 
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If 2  is sufficiently large, 0p  , since 3m  can be arbitrarily 
small. 

Integrating, we obtain 
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Since ( ) 0q t  , there exist 3 2t t  and 2 0   such that 
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Since 2  can be arbitrarily small, this yields 2( )y t
p


  as 

t  . This completes the proof.            

V. DISCUSSION AND CLINICAL INTERPRETATION 
We have thus constructed and analyzed a model of 

microbial resistance to drugs in order to illustrate how a delay 
in the process of plasmid transfer can effect the dynamic 
behavior of the system. We have found that under suitable 
conditions, the susceptible strain may win out and the resistant 
population can vanish, corresponding to the case where 1E  is 
stable, which is the desirable outcome. The more favorable 
outcome in the treatment of diseases is, in fact, for the 
equilibrium *E to be stable, in which case both strains of the 
bacterial population vanish. 

If we define the reproduction numbers as 
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then Theorem 2 assures that the equilibrium *E  will be 
asymptotically stable if 1 1R  , and 2 1R  , and both the 
susceptible and resistant population will become extinct 

provided their densities are initially not very much different 
from the equilibrium. 

We have also analyzed a model of drug resistance with time 
delay under impulsive drug intake, which results in periodic 
removal of the susceptible bacterial strain or both strains. The 
model is investigated in terms of the global asymptotic 
stability of the bacterial free solution. If we let 
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2 1
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then, Theorem 7 implies that, under suitable conditions, the 
system can be free of both bacterial strains, provided 

3 1R                     (57) 
as well as 

4 1R                     (58) 

The equilibrium * *(0,0, )E z  of (10)-(15) is then globally 
asymptotically stable for all .0   

We note here that if the above 2 inequalities are satisfied 
then we also have 1 1R  , and 2 1R  . This means that if the 
bacteria free equilibrium *E of the delayed system under 
impulsive drug treatment is globally asymptotically stable, 
then the bacteria free equilibrium *E of the system without ant 
drug treatment will be locally asymptotically stable. 

The asymptotic stability of the susceptible strain free 
equilibrium for the system under drug treatment can be stated 
in terms of the basic reproduction number 0R , defined by 
(53), known as the average number of new susceptible 
bacterial particles that arise from each reproducing bacteria. 
Assuming that (52) holds, then Theorem 8 assures us that the 
susceptible bacteria free equilibrium will be locally 
asymptotically stable for all 0   if 

0 1R   

and, as in (54), 

  1
1

ln 1 /T



  



 

In other words, for the Floquet Theorem to apply (from the 
proof of Theorem 8), we need to satisfy (54) which puts a 

restriction on the frequency of the drug treatment 1
T

 

conditional on the drug efficacy  . Inequality (54) gives a 
very useful and applicable guideline for physicians 
administering the drug. In particular, it informs us that the 
frequency of drug applications must exceed the quantity on 
the right of (54) which depend on  . If the drug’s strength is 
higher,   being larger, then the prescribed drug could be 
taken less frequently. Once the susceptible strain vanishes, the 
resistant strain, by equation (43) could eventually get 
eliminated by natural immunological responses, provided of 
course that there is no additional infection by foreign resistant 
strain. 
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Finally, considering the conditions (27), (48), (49), (52) and 
(55) which involve the delay  , we see that the delay in the 
conjugative plasmid transfer does play an important role in the 
stability or instability of the system. 

VI. CONCLUSION 
According to WHO [15], antimicrobial resistance, which 

refers to the ability of microorganisms to enable a disease to 
withstand treatment by antimicrobial medicines, is 
increasingly being detected. Whether it is a drug used to treat 
common bacterial infections, or the complex combinations 
now being used to fight HIV infection, resistance is spreading 
at an alarming pace. Medicines which are once effective in 
fighting against malaria and tuberculosis have now become 
virtually useless in many parts of the world [15]. Drug 
resistance has become a major public health risk and it is 
feared that its spread can seriously threaten any advances in 
our ability to medicate and cure diseases. 

Our analysis has yielded quite valuable discoveries that can 
assist the physicians facing with the threat of antibiotic 
resistance, to be able to make appropriate adjustments in the 
attempt to contain the worsening degree of drug resistance. 
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